These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. Author: Xiang W, Hummel M, Mitteregger G, Pace C, Windl O, Mansmann U, Kretzschmar HA. Journal: J Neurochem; 2007 Aug; 102(3):834-47. PubMed ID: 17437544. Abstract: To identify the dynamic transcriptional alterations in CNS during the development of prion disease, brains of scrapie-infected mice and age-matched, mock-inoculated controls were analyzed immediately before inoculation and at different time points post-inoculation using Affymetrix microarray technique. A total of 449 probe sets, representing 430 genes, showed differential expression between scrapie- and mock-inoculated mice over the time course. These genes could be separated into two clusters according to expression patterns: the genes in cluster 1 demonstrated lower mRNA levels in scrapie-infected brains when compared with mock-inoculated brains, whereas genes in cluster 2 showed higher mRNA levels in scrapie-infected brains. Functional analysis of differentially expressed genes revealed the most severely affected biological process: cholesterol metabolism. The expression patterns of the cholesterol-related genes indicated an inhibited cholesterol synthesis in the diseased brains. Conspicuously, a number of cluster 1 genes, including some of cholesterol-related genes, showed not only decreasing mRNA levels in scrapie-infected brains but also increasing mRNA levels in mock-inoculated brains with increasing age. Quantitative RT-PCR analysis of some cholesterol-related genes in untreated mice suggested that changes of the examined genes observed in mock-inoculated brains are mainly age related. This finding indicated a link between age-related genes and scrapie-associated neurodegeneration.[Abstract] [Full Text] [Related] [New Search]