These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Embryonic motor neuron dendrite growth is stunted by inhibition of nitric oxide-dependent activation of soluble guanylyl cyclase and protein kinase G. Author: Xiong G, Mojsilovic-Petrovic J, Pérez CA, Kalb RG. Journal: Eur J Neurosci; 2007 Apr; 25(7):1987-97. PubMed ID: 17439487. Abstract: We have examined the participation of a neuronal nitric oxide synthase (nNOS) signaling pathway in the elaboration of motor neuron dendrites during embryonic life. During chick embryogenesis, nNOS is expressed by interneurons that surround the motor neuron pools in the ventral horn. Pseudorabies virus tracing suggests that these cells, while juxtaposed to motor neurons are not synaptically connected to them. The downstream effectors, soluble guanylyl cyclase (sGC) and protein kinase G (PKG), are found in motor neurons as well as several other populations of spinal cord cells. To determine the functional significance of the nNOS/sGC/PKG signaling pathway, pharmacological inhibitors were applied to chick embryos and the effects on motor neuron dendrites monitored. Inhibition of nNOS activity led to a lasting reduction in the overall size and degree of branching of the dendritic tree. These alterations in dendritic architecture were also seen when the activity of sGC or PKG was blocked. Our results suggest that normal motor neuron dendrite elaboration depends, in part, on the activity-dependent generation of NO by ventral horn interneurons, which then activates sGC and PKG in motor neurons.[Abstract] [Full Text] [Related] [New Search]