These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations.
    Author: Schnetkamp PP, Li XB, Basu DK, Szerencsei RT.
    Journal: J Biol Chem; 1991 Dec 05; 266(34):22975-82. PubMed ID: 1744092.
    Abstract:
    Regulation of free cytosolic Ca2+ concentration in the rod outer segments (ROS) isolated from bovine retinas was examined with the fluorescent Ca(2+)-indicating dye fluo-3. In situ calibration of cytosolic fluo-3 was done in the presence of the Ca2+ ionophore A23187 and yielded a dissociation constant of 500 nM for the Ca(2+)-fluo-3 complex. Ca2+ influx in Ca(2+)-depleted ROS was completely abolished when internal Na+ was removed suggesting that Ca2+ influx exclusively occurred via Na-Ca-K exchange. The most striking observation was that Na-Ca-K exchange could mediate a rapid increase in cytosolic free Ca2+ over the most of the usable indicating range of fluo-3 (from 10 nM to 2 microM), even when exposed to free external Ca2+ concentrations as low as 10 nM. From a comparison between changes in free Ca2+ and changes in total Ca2+, we conclude that physiologically occurring changes in cytosolic free Ca2+ are mediated by exchange fluxes less than 1% of the maximal Na-Ca-K exchange flux. The Na-Ca-K exchanger could mediate both K(+)-dependent and K(+)-independent Ca2+ influx; Li+ caused a complete inhibition of K(+)-independent Ca2+ influx, but had no effect on K(+)-dependent Ca2+ influx. We examined the complex interactions of alkali cations with Ca2+ influx and discuss the results in terms of a three-site model for the Na-Ca-K exchanger (Schnetkamp, P. P. M. and Szerencsei, R. T. (1991) J. Biol. Chem. 266, 189-197). Ca2+ competed with one Mg2+ ion or two Na+ ions for binding to a common site. High K+ concentration greatly diminished the ability of Na+ and Mg2+ to compete with Ca2+ for this common site on the exchanger protein. As a result, high internal K+ induced a conformation of the exchange protein that kinetically favoured Ca2+ extrusion.
    [Abstract] [Full Text] [Related] [New Search]