These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of RNA helicase A by DNA-dependent protein kinase is indispensable for expression of the MDR1 gene product P-glycoprotein in multidrug-resistant human leukemia cells. Author: Zhong X, Safa AR. Journal: Biochemistry; 2007 May 15; 46(19):5766-75. PubMed ID: 17441731. Abstract: Development of multidrug resistance (MDR) in cancer frequently involves overexpression of the MDR1 gene product P-glycoprotein (P-gp), a drug transporter which severely impedes the efficacy of chemotherapy. Because intensive efforts to identify therapeutics that reverse MDR by inhibiting the drug transport activity of P-gp have not yet met with success, we have focused on the alternative strategy of targeting MDR1 promoter activation to knockdown P-gp expression in cancer cells. We recently identified RNA helicase A (RHA) inhibition as a rational strategy to downregulate P-gp in leukemia cells by showing that RHA RNAi knockdown abrogated P-gp expression in MDR variants of human leukemia HL-60 cells. In that report, we also demonstrated that RHA activated the MDR1 promoter in the MDR variant cells but not in the drug-sensitive counterpart. This led us to hypothesize that P-gp induction by RHA required cooperation with another factor present only in the MDR variants. Here, we identify the RHA cooperating factor as DNA-PK catalytic subunit (cs), and we show that DNA-PKcs resides with RHA at the MDR1 promoter in a multiprotein complex. Furthermore, targeted DNA-PKcs inhibition abrogated P-gp expression in the MDR variant cells. We demonstrate that constitutive multisite RHA phosphorylation producing retarded migration in SDS-PAGE is catalyzed by DNA-PKcs in the MDR variants, and does not occur in the parental cells, which are DNA-PKcs deficient. The indispensable role played by DNA-PK in P-gp overexpression in MDR leukemia cells in this report identifies targeted DNA-PK inhibition as a rational strategy to reverse drug resistance in cancer.[Abstract] [Full Text] [Related] [New Search]