These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organoplatinum complexes containing bis(diphenylphosphino)amine as ligand: uncommon case of N-H . . . I-Pt hydrogen bonding.
    Author: Hoseini SJ, Mohamadikish M, Kamali K, Heinemann FW, Rashidi M.
    Journal: Dalton Trans; 2007 May 07; (17):1697-704. PubMed ID: 17443262.
    Abstract:
    The complex [PtMe(2)(dppa)], 1a, dppa = Ph(2)PNHPPh(2), which has previously been prepared as a mixture with the dimeric form [Pt(2)Me(4)(micro-dppa)(2)], was synthesized in pure form by the reaction of [PtCl(2)(dppa)] with MeLi. The aryl analogue [Pt(p-MeC(6)H(4))(2)(dppa)], 1b, was prepared by replacement of SMe(2) in cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with dppa. The reaction of the chelate complexes 1 with one equiv. of dppa afforded the complexes [PtR(2)(dppa-P)(2)], R=Me, 2a and R=p-MeC(6)H(4) 2b. The reaction of [PtR(2)(dppa)], 1, with neat MeI gave the organoplatinum(iv) complexes [PtR(2)MeI(dppa)], R=Me, 5a and R=p-MeC(6)H(4), 5b. The structure of 5a, determined by X-ray crystallography, indicated that the complex undergoes self-assembly by intermolecular N-H . . . I-Pt hydrogen bonding. MeI was also double oxidatively added to organodiplatinum(ii) complex cis,cis-[Me(2)Pt(micro-SMe(2))(micro-dppa)PtMe(2)], to give diorganoplatinum(iv) complex [Me(3)Pt(micro-dppa)(micro-I)(2)PtMe(3)], 4. The aryl analogue organodiplatinum(ii) complex cis,cis-[(p-MeC(6)H(4))(2)Pt(micro-SMe(2))(micro-dppa)Pt(p-MeC(6)H(4))(2)], 3b, was prepared by the reaction of cis-[Pt(p-MeC(6)H(4))(2)(SMe(2))(2)] with half equiv. of dppa, but 3b refused to react with MeI, probably because of the steric effects of the aryl ligands. The tetramethyl complex [PtMe(4)(dppa)], 6, was prepared either by reaction of 5a with MeLi or by replacement of SMe(2) in [Pt(2)Me(8)(micro-SMe(2))(2)] with dppa. All the complexes were fully characterized in solution by multinuclear NMR ((1)H, (13)C, (31)P and (195)Pt) methods and their coordination compared with that of the corresponding known dppm complexes.
    [Abstract] [Full Text] [Related] [New Search]