These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The serotonin receptor SER-1 (5HT2ce) contributes to the regulation of locomotion in Caenorhabditis elegans. Author: Dernovici S, Starc T, Dent JA, Ribeiro P. Journal: Dev Neurobiol; 2007 Feb 01; 67(2):189-204. PubMed ID: 17443782. Abstract: Serotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named SER-1 (also known as 5HT2ce) was responsible for the effect of 5HT on egg-laying. Here we confirm this observation and show that SER-1 also plays an important role in locomotion. A mutant lacking SER-1 was found to be highly resistant to exogenous 5HT in the absence of food and this resistant phenotype was rescued by reintroducing the SER-1 gene in a mutant background. Pharmacological studies showed that the same antagonists that blocked the activity of recombinant SER-1 in vitro also inhibited the effect of 5HT on motility, suggesting the same receptor was responsible for both effects. When tested for locomotory behaviors, the SER-1 mutant was found to be moderately defective in food-induced slowing. In addition, the mutant changed direction more frequently than the wildtype when searching for food, suggesting that SER-1 may play a role in navigational control during foraging. Both these effects required the presence of MOD-1, a 5HT gated chloride channel, and the results indicate that SER-1 and MOD-1 modulate these behaviors through a common pathway. On the basis of expression analysis of a ser-1::GFP translational fusion, SER-1 is prominently located in central, integrating neurons of the head ganglia (RIA and RIC) but not the body wall musculature. The evidence suggests that SER-1 controls locomotion through indirect modulation of neuromuscular circuits and has effects both on speed and direction of movement.[Abstract] [Full Text] [Related] [New Search]