These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An improved synthesis of NHS-MAG3 for conjugation and radiolabeling of biomolecules with (99m)Tc at room temperature.
    Author: Wang Y, Liu X, Hnatowich DJ.
    Journal: Nat Protoc; 2007; 2(4):972-8. PubMed ID: 17446896.
    Abstract:
    The mercaptoacetyltriglycine (MAG3) chelator has been shown to stably complex technetium-99m (99mTc) for nuclear imaging and radiorhenium (186/188Re) for tumor radiation therapy studies. The bifunctional N-hydroxysuccinimidyl ester of MAG3 with S-acetyl protection (N-hydroxysuccinimidyl S-acetylmercaptoacetyltriglycinate (NHS-MAG3)) has been successfully used to covalently conjugate a MAG3 chelator to primary amine functionalized biomolecules. We describe herein a simplified synthesis of NHS-MAG3 that begins with the preparation of the N-hydroxysuccinimidyl ester of S-acetylmercaptoacetic acid (N-succinimidyl S-acetylmercaptoacetate (SATA)) from mercaptoacetic acid and is followed by the synthesis of S-acetylmercaptoacetyltriglycine from SATA, together requiring about 14 days. Finally, the synthesis of NHS-MAG3 from S-acetylmercaptoacetyltriglycine requires a further 5 days. We had earlier described a method for the preparation of MAG3-conjugated and 99mTc-radiolabeled biomolecules that required elevated temperatures during postconjugation purification. We now report a modified method for the preparation that is accomplished at room temperature and therefore applicable to temperature-sensitive biomolecules. The conjugation and radiolabeling of bovine serum albumin is used as an example. The conjugation and purification requires about 2-3 h and the radiolabeling and postlabeling purification requires about an additional 2 h.
    [Abstract] [Full Text] [Related] [New Search]