These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Zfx controls the self-renewal of embryonic and hematopoietic stem cells.
    Author: Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK, Mirny LA, Reizis B.
    Journal: Cell; 2007 Apr 20; 129(2):345-57. PubMed ID: 17448993.
    Abstract:
    Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult HSC but did not affect erythromyeloid progenitors or fetal HSC. Zfx-deficient ESC and HSC showed increased apoptosis and SC-specific upregulation of stress-inducible genes. Zfx directly activated common target genes in ESC and HSC, as well as ESC-specific target genes including ESC self-renewal regulators Tbx3 and Tcl1. These studies identify Zfx as a shared transcriptional regulator of ESC and HSC, suggesting a common genetic basis of self-renewal in embryonic and adult SC.
    [Abstract] [Full Text] [Related] [New Search]