These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Author: Cabrales P. Journal: Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555. Abstract: Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. Anemic conditions were induced by two isovolemic hemodilution steps using 6% 70-kDa dextran to a hematocrit (Hct) of 18% (moderate hemodilution). The protocol continued with an exchange transfusion to reduce native RBCs to 75% of baseline (11% Hct) with either fresh RBCs (RBC group) or reduced-flexibility RBCs (GRBC group) suspended in 5% albumin at 18% Hct; a plasma expander (6% 70-kDa dextran; Dex70 group) was used as control. Systemic parameters, microvascular perfusion, capillary perfusion [functional capillary density (FCD)], and oxygen levels across the microvascular network were measured by noninvasive methods. RBC deformability for GRBCs was significantly decreased compared with RBCs and moderate hemodilution conditions. The GRBC group had a greater mean arterial blood pressure (MAP) than the RBC and Dex70 groups. FCD was substantially higher for RBC (0.81 +/- 0.07 of baseline) vs. GRBC (0.32 +/- 0.10 of baseline) and Dex70 (0.38 +/- 0.10 of baseline) groups. Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome.[Abstract] [Full Text] [Related] [New Search]