These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Predictions of the geometries and fluorescence emission energies of oxyluciferins. Author: Yang T, Goddard JD. Journal: J Phys Chem A; 2007 May 24; 111(20):4489-97. PubMed ID: 17451230. Abstract: The complete active space self-consistent field (CASSCF) method and multiconfigurational second-order perturbation theory (CASPT2) have been used to study the structures and spectra of oxyluciferins (OxyLH2). The ground and lowest-lying singlet excited states geometries have been optimized using CASSCF. CASPT2 has been used to predict relaxed emission energies. The focus is on the lowest-lying singlet excited states of the anionic keto and enol forms of OxyLH2(-1) at the optimized excited-state geometries. The planar keto and enol forms of OxyLH2(-1) are minima on both the S0 and the S1 potential energy surfaces. The twisted keto and enol forms of OxyLH2(-1) are transition states on the S0 and S1 potential energy surfaces. The S1 --> S0 fluorescence emission energies are in the range of 54.2-58.4 kcal/mol for the anionic planar keto forms of OxyLH2, and in the range of 55.7-63.2 kcal/mol for the anionic enol forms of OxyLH2. S0 and S1 potential energy surfaces and thus are not implicated in the emission spectra in the gas phase.[Abstract] [Full Text] [Related] [New Search]