These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Athermal microwave effects for enhancing digestibility of waste activated sludge. Author: Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M. Journal: Water Res; 2007 Jun; 41(11):2457-66. PubMed ID: 17451781. Abstract: A bench scale industrial microwave (MW) unit equipped with fiber optic temperature and pressure controls within pressure sealed vessels successfully simulated conventional heating (CH, in water bath). By identical temporal heat temperature profiles for waste activated sludge (WAS) samples, evaluation of the athermal effects of MW irradiation on WAS floc disintegration and anaerobic digestion was achieved. In a pretreatment range of 50-96 degrees C, both MW and CH WAS samples resulted in similar particulate chemical oxygen demand (COD) and biopolymer (protein and polysaccharide) solubilization and there was no discernable MW athermal effect on the COD solubilization of WAS. However, biochemical methane potential (BMP) tests showed improved biogas production for MW samples over CH samples indicating that the MW athermal effect had a positive impact on the mesophilic anaerobic biodegradability of WAS. BMP tests also showed that despite mild inhibition in the first 7d, MW acclimated inoculum digesting pretreated (to 96 degrees C) WAS, produced 16+/-4% higher biogas compared to the control after 15 d of mesophilic batch digestion. However, initial acute inhibition was more severe for non-acclimated inoculum requiring recovery time that was two times longer with only 4+/-0% higher biogas production after 17d. Inoculum acclimation not only accelerated the production of biogas, but also increased the extent of the ultimate mesophilic biodegradation of MW irradiated WAS (after 15-27 d).[Abstract] [Full Text] [Related] [New Search]