These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. Author: Hartl L, Kubicek CP, Seiboth B. Journal: J Biol Chem; 2007 Jun 22; 282(25):18654-18659. PubMed ID: 17452322. Abstract: The Saccharomyces cerevisiae galactokinase ScGal1, a key enzyme for D-galactose metabolism, catalyzes the conversion of D-galactose to D-galactose 1-phosphate, whereas its catalytically inactive paralogue, ScGal3, activates the transcription of the GAL pathway genes. In Kluyveromyces lactis the transcriptional inducer function and the galactokinase activity are encoded by a single bifunctional KlGal1. Here, we investigated the cellular function of the single galactokinase GAL1 in the multicellular ascomycete Hypocrea jecorina (=Trichoderma reesei) in the induction of the gal genes and of the galactokinase-dependent induction of the cellulase genes by lactose (1,4-O-beta-D-galactopyranosyl-D-glucose). A comparison of the transcriptional response of a strain deleted in the gal1 gene (no putative transcriptional inducer and no galactokinase activity), a strain expressing a catalytically inactive GAL1 version (no galactokinase activity but a putative inducer function), and a strain expressing the Escherichia coli galK (no putative transcriptional inducer but galactokinase activity) showed that, in contrast to the two yeasts, both the GAL1 protein and the galactokinase activity are fully dispensable for induction of the Leloir pathway gene gal7 by D-galactose and that only the galactokinase activity is required for cellulase induction by lactose. The data document a fundamental difference in the mechanisms by which yeasts and multicellular fungi respond to the presence of D-galactose, showing that the Gal1/Gal3-Gal4-Gal80-dependent regulatory circuit does not operate in multicellular fungi.[Abstract] [Full Text] [Related] [New Search]