These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure.
    Author: Badillo AT, Redden RA, Zhang L, Doolin EJ, Liechty KW.
    Journal: Cell Tissue Res; 2007 Aug; 329(2):301-11. PubMed ID: 17453245.
    Abstract:
    Diabetes impairs multiple aspects of the wound-healing response. Delayed wound healing continues to be a significant healthcare problem for which effective therapies are lacking. We have hypothesized that local delivery of mesenchymal stromal cells (MSC) at a wound might correct many of the wound-healing impairments seen in diabetic lesions. We treated excisional wounds of genetically diabetic (Db-/Db-) mice and heterozygous controls with either MSC, CD45(+) cells, or vehicle. At 7 days, treatment with MSC resulted in a decrease in the epithelial gap from 3.2 +/- 0.5 mm in vehicle-treated wounds to 1.3 +/- 0.4 mm in MSC-treated wounds and an increase in granulation tissue from 0.8 +/- 0.3 mm(2) to 2.4 +/- 0.6 mm(2), respectively (mean +/- SD, P < 0.04). MSC-treated wounds also displayed a higher density of CD31(+) vessels and exhibited increases in the production of mRNA for epidermal growth factor, transforming growth factor beta 1, vascular endothelial growth factor, and stromal-derived growth factor 1-alpha. MSC also demonstrated greater contractile ability than fibroblast controls in a collagen gel contraction assay. The effects of locally applied MSC are thus sufficient to improve healing in diabetic mice. Possible mechanisms of this effect include augmented local growth-factor production, improved neovascularization, enhanced cellular recruitment to wounds, and improved wound contraction.
    [Abstract] [Full Text] [Related] [New Search]