These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aerosol characteristics and surface radiative forcing components during a dust outbreak in Gwangju, Republic of Korea.
    Author: Ogunjobi KO, Kim YJ.
    Journal: Environ Monit Assess; 2008 Feb; 137(1-3):111-26. PubMed ID: 17458510.
    Abstract:
    Atmospheric surface aerosol radiative forcing (SARF) DeltaF, forcing efficiency DeltaF(e) and fractional forcing efficiency DeltaFF(e) evaluated from cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Asia dust outbreak episodes in Gwangju, Republic of Korea are reported in this study. Columnar aerosol optical properties (aerosol optical depth (AOD), tau (alambda), Angstrom exponent alpha, mass concentration of fine and coarse mode particles) were also reported for the station between January 2000 and May 2001 consisting of 211cloud-free days. Results indicate that majority of the AOD were within the range 0.25-0.45 while some high aerosol events in which AODs > or = 0.6 were observed during the severe dust episodes. For example, AOD increases from annual average value of 0.34 +/- 0.13 at 501 nm to values >0.60 during the major dust events of March 27-30 and April 7-9, 2000, respectively. The alpha (501-870 nm) which is often used as a qualitative indicator of aerosol particle size had values ranging from 0.01 to 1.77. The diurnal forcing efficiency DeltaDF(e) at Gwangju was estimated to be -81.10 +/- 5.14 W m (-2)/tau (501 nm) and -47.09 +/- 2.20 W m (-2)/tau (501 nm) for the total solar broadband and visible band pass, respectively while the fractional diurnal forcing efficiency DeltaFDF(e) were -15.8 +/- 0.64%/tau (501 nm) and -22.87 +/- 1.13%/tau (501 nm) for the same band passes. Analyses of the 5-day air-mass back trajectories were further developed for Gwangju in order to classify the air-mass and types of aerosol reaching the site during the Asia dust episodes.
    [Abstract] [Full Text] [Related] [New Search]