These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 4-hydroxy nimesulide effects on mitochondria and HepG2 cells. A comparison with nimesulide.
    Author: Freitas CS, Dorta DJ, Pardo-Andreu GL, Pestana CR, Tudella VG, Mingatto FE, Uyemura SA, Santos AC, Curti C.
    Journal: Eur J Pharmacol; 2007 Jul 02; 566(1-3):43-9. PubMed ID: 17459371.
    Abstract:
    We previously reported that the nonsteroidal anti-inflammatory drug, nimesulide (N-[4-nitro-2-phenoxyphenyl]-methanesulfonamide), is an uncoupler and oxidizes NAD(P)H in isolated rat liver mitochondria, triggering mitochondrial Ca2+ efflux or, if this effect is inhibited, eliciting mitochondrial permeability transition (Mingatto et al., Br. J. Pharmacol. 131:1154-1160, 2000). We presently demonstrated that nimesulide's hydroxylated metabolite (4-hydroxy nimesulide) lacks the uncoupling property of the parent drug, while keeping its ability to oxidize mitochondrial NADPH. In the presence of 10 microM Ca2+, low (5-50 microM) concentrations of 4-hydroxy nimesulide elicited mitochondrial permeability transition, as assessed by cyclosporin A-sensitive mitochondrial swelling, associated with mitochondrial Ca2+ efflux/membrane potential dissipation (Deltapsi), apparently occurring on account of the oxidation of mitochondrial protein thiols; no involvement of reactive oxygen species was observed. While nimesulide (0.5 or 1 mM, 30 h incubation) did not lead to significant HepG2 cell death, 4-hydroxy nimesulide caused a low extent (approximately 15%) of cell necrosis, partly prevented by cyclosporine A, suggesting the involvement of mitochondrial permeability transition. Both nimesulide and 4-hydroxy nimesulide caused NADPH oxidation and Deltapsi dissipation in HepG2 cells. Because such Deltapsi dissipation induced by the metabolite was almost completely inhibited by cyclosporine A, it probably results from the mitochondrial permeability transition. Therefore, mitochondrial permeability transition, in apparent association with NADPH oxidation, constitutes the most probable cause of HepG2 cell death elicited by 4-hydroxy nimesulide.
    [Abstract] [Full Text] [Related] [New Search]