These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and dynamic NMR studies of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} complexes. Author: Boag NM, Haghgooie H, Hassanzadeh A. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):156-9. PubMed ID: 17459761. Abstract: The formation of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} (R=Me, Et) complexes was established by spectroscopic analysis. The infrared spectra of these complexes showed a sharp absorption due to the presence of coordinated carbonyl group in the region 2017-2013cm(-1). The N,N-dialkylcarbamoyl ligands showed a characteristic CO stretching absorption in the range 1609-1616cm(-1). The proton NMR spectra of these complexes revealed the expected singlet arising from five equivalent methyl groups on the cyclopentadienyl ring with satellites due to coupling to (195)Pt. The N-methyl and N-ethyl protons exhibited very broad resonances due to restricted rotation about the N-C bond at room temperature. On cooling to -30 degrees C, the N,N-dimethyl protons for complex Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} showed two sharp singlets at delta 2.86 and 3.09ppm as expected for the static structure. For the N,N-diethyl derivative, Pt(eta(5)-C(5)Me(5))(CO){C(O)NEt(2)}, the methyl protons exhibited only a single triplet at delta 1.06ppm at -10 degrees C due to coupling with the methylene protons. This single resonance arises through accidental overlap as the methylene protons of the ethyl groups are inequivalent at this temperature and each exhibited a quartet at delta 3.33 and 3.70ppm due to coupling with the methyl protons. The singlet resonances for the methyl and ring carbons of the eta(5)-C(5)Me(5) group found in (13)C{(1)H} NMR spectra are illustrative of the chemical equivalence of all the carbon atoms caused by free rotation of the ring in these complexes. The signals attributable to the carbonyl and carbamoyl carbon atom resonances are found downfield as two singlets each with a large coupling constant to platinum. The platinum coupling constants of the downfield resonances could not be identified for Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} due to presence of impurities.[Abstract] [Full Text] [Related] [New Search]