These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of deleting mitochondrial antioxidant genes on life span.
    Author: Unlu ES, Koc A.
    Journal: Ann N Y Acad Sci; 2007 Apr; 1100():505-9. PubMed ID: 17460215.
    Abstract:
    Reactive oxygen species (ROS) damage biomolecules, accelerate aging, and shorten life span, whereas antioxidant enzymes mitigate these effects. Because mitochondria are a primary site of ROS generation and also a primary target of ROS attack, they have become a major focus area of aging studies. Here, we employed yeast genetics to identify mitochondrial antioxidant genes that are important for replicative life span. In our studies, it was found that among the known mitochondrial antioxidant genes (TTR1, CCD1, SOD1, GLO4, TRR2, TRX3, CCS1, SOD2, GRX5, PRX1), deletion of only three genes, SOD1 (Cu, Zn superoxide dismutase), SOD2 (Manganese-containing superoxide dismutase), and CCS1 (Copper chaperone), shortened the life span enormously. The life span decreased 40% for Deltasod1 mutant, 72% for Deltasod2 mutant, and 50% for Deltaccs1 mutant. Deletion of the other genes had little or no effect on life span.
    [Abstract] [Full Text] [Related] [New Search]