These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products.
    Author: San Martin A, Foncea R, Laurindo FR, Ebensperger R, Griendling KK, Leighton F.
    Journal: Free Radic Biol Med; 2007 Jun 01; 42(11):1671-9. PubMed ID: 17462535.
    Abstract:
    Vascular diseases are important clinical complications of diabetes. Advanced glycation end-products (AGE) are mediators of vascular dysfunction, but their effects on vascular smooth muscle cell (VSMC) ROS production are unclear. We studied the source and downstream targets of AGE-mediated ROS and reactive nitrogen species production in these cells. Significant increases in superoxide production in AGE-treated VSMC were measured using lucigenin (7650+/-433 vs 4485+/-424 LU/10(6) cells, p<0.001) or coelenterazine (277,907+/-71,295 vs 120,456+/-4140 LU/10(6) cells, p<0.05) and confirmed by ESR spectroscopy. These signals were blocked by the flavin-containing oxidase inhibitor diphenylene iodonium (DPI). AGE-stimulated NF-kappaB activity was abolished by DPI and the superoxide scavenger MnTBAP. AGE differentially regulated VSMC NADPH oxidase catalytic subunits, stimulating the transcription of Nox1 (201+/-12.7%, p<0.0001), while having no effect on Nox4. AGE also increased 3-nitrotyrosine formation, which was inhibited by MnTBAP, DPI, or the NOS inhibitor L-NAME. Regarding the source of NO, AGE stimulated inducible nitric oxide synthase mRNA (1 vs 9.7+/-3.0, p=0.046), which was abolished by a NF-kappaB inhibitor, SOD, catalase, or siRNA against Nox1. This study establishes that AGE activate iNOS in VSMC through a ROS-sensitive, NF-kappaB-dependent mechanism involving ROS generation by a Nox1-based oxidase.
    [Abstract] [Full Text] [Related] [New Search]