These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interferon-beta regulates cytokines and BDNF: greater effect in relapsing than in progressive multiple sclerosis.
    Author: Hamamcioglu K, Reder AT.
    Journal: Mult Scler; 2007 May; 13(4):459-70. PubMed ID: 17463069.
    Abstract:
    The mechanism of action of interferon (IFN)-beta therapy in multiple sclerosis (MS) is only partially known, and its efficacy changes with disease stage. In different forms of MS, we determined how IFN-beta regulates mononuclear cell production of the important anti-inflammatory Th2 cytokine - IL-10, the Th1 cytokine - IFN-gamma, and the brain-derived neurotrophic protein - BDNF. Activated T cells and monocytes from therapy-naïve patients secreted more IL-10 than healthy controls. During IFN-beta therapy, however, T cells produced less IL-10. In vitro, IFN-beta stimulated IL-10 production by activated T cells, but inhibited IL-10 secretion by activated monocytes, a richer source of IL-10 than T cells. The form of MS also affected cytokine production. IL-10 and BDNF levels in MNC were high during relapsing/remitting (RR) MS, but low in progressive MS. Surprisingly, IFN-beta therapy increased BDNF levels in antidepressant-naïve patients, but BDNF was lower during concurrent antidepressant drug therapy, suggesting an interaction between MS, depression, and neurodegeneration. IFN-beta in vitro strongly induced IL-10 and IFN-gamma in activated T cells in RRMS, but not in progressive MS, suggesting IFN resistance. IFN-beta effects are specific for disease state and immune subsets, possibly explaining why IFN-beta therapy is most effective in early T cell-regulated RRMS, but less beneficial in progressive MS, where chronic plaques contain few T cells and high numbers of monocytes.
    [Abstract] [Full Text] [Related] [New Search]