These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle fluid shift does not alter EMG global variables during sustained isometric actions. Author: von Walden F, Pozzo M, Elman T, Tesch PA. Journal: J Electromyogr Kinesiol; 2008 Oct; 18(5):849-56. PubMed ID: 17466537. Abstract: Body fluid redistribution occurs in astronauts traveling in space, potentially altering interstitial water content and hence impedance. This in turn may impact the features of electromyographic (EMG) signals measured to compare in-flight muscle function with pre- and post-flight conditions. Thus, the current study aimed at investigating the influence of similar fluid shifts on EMG spectral variables during muscle contractile activity. Ten men performed sustained isometric actions (120 s) at 20% and 60% of maximum voluntary contraction (MVC) following 1-h rest in the vertical or supine position. From single differential EMG signals, recorded from the soleus (SOL), the medial (MG) and lateral (LG) gastrocnemius muscles, initial value and rate of change over time (slope) of mean power frequency (MNF) and average rectified value (ARV) were assessed. MNF initial value showed dependence on muscle (P<0.01), but was unaffected by body tilt. MNF rate of change increased (P<0.001) with increased force and differed across muscles (P<0.05), but was not influenced (P=0.85) by altered body position. Thus, fluid shift resulting from vertical to supine tilt had no impact on myoelectrical manifestations of muscle fatigue. Furthermore, since such alteration of body fluid distribution resembles that occurring in microgravity, our findings suggest this may not be a methodological limitation, when comparing EMG fatigue indices on Earth versus in space.[Abstract] [Full Text] [Related] [New Search]