These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes.
    Author: Hennebert O, Chalbot S, Alran S, Morfin R.
    Journal: J Steroid Biochem Mol Biol; 2007 May; 104(3-5):326-33. PubMed ID: 17467270.
    Abstract:
    Dehydroepiandrosterone (DHEA) is 7alpha-hydroxylated by the cytochome P450 7B1 (CYP7B1) in the human brain and liver. This produces 7alpha-hydroxy-DHEA that is a substrate for 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which exists in the same tissues and carries out the inter-conversion of 7alpha- and 7beta-hydroxy-DHEA through a 7-oxo-intermediary. Since the role of 11beta-HSD1 is to transform the inactive cortisone into active cortisol, its competitive inhibition by 7alpha-hydroxy-DHEA may support the paradigm of native anti-glucocorticoid arising from DHEA. Therefore, our objective was to use human tissues to assess the presences of both CYP7B1 and 11beta-HSD1. Human skin was selected then and used to test its ability to produce 7alpha-hydroxy-DHEA, and to test the interference of 7alpha- and 7beta-hydroxy-DHEA and 7-oxo-DHEA with the 11beta-HSD1-mediated oxidoreduction of cortisol and cortisone. Immuno-histochemical studies showed the presence of both CYP7B1 and 11beta-HSD1 in the liver, skin and tonsils. DHEA was readily 7alpha-hydroxylated when incubated using skin slices. A S9 fraction of dermal homogenates containing the 11beta-HSD1 carried out the oxidoreduction of cortisol and cortisone. Inhibition of the cortisol oxidation by 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA was competitive with a Ki at 1.85+/-0.495 and 0.255+/-0.005 microM, respectively. Inhibition of cortisone reduction by 7-oxo-DHEA was of a mixed type with a Ki at 1.13+/-0.15 microM. These findings may support the previously proposed native anti-glucocorticoid paradigm and suggest that the 7alpha-hydroxy-DHEA production is a key for the fine tuning of glucocorticoid levels in tissues.
    [Abstract] [Full Text] [Related] [New Search]