These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and radiopharmacological characterization of 2beta-carbo-2'-[18F]fluoroethoxy-3beta-(4-bromo-phenyl)tropane ([18F]MCL-322) as a PET radiotracer for imaging the dopamine transporter (DAT).
    Author: Wuest F, Berndt M, Strobel K, van den Hoff J, Peng X, Neumeyer JL, Bergmann R.
    Journal: Bioorg Med Chem; 2007 Jul 01; 15(13):4511-9. PubMed ID: 17467995.
    Abstract:
    The fluoroalkyl-containing tropane derivative 2beta-carbo-2'-fluoroethoxy-3beta-(4-bromo-phenyl)tropane (MCL-322) is a highly potent and moderately selective ligand for the dopamine transporter (DAT). The compound was labeled with the short-lived positron emitter (18)F in a single step by nucleophilic displacement of the corresponding tosylate precursor MCL-323 with no-carrier-added [(18)F]fluoride. The positron emission tomography (PET) radiotracer 2beta-carbo-2'-[(18)F]fluoroethoxy-3beta-(4-bromo-phenyl)tropane [(18)F]MCL-322 was obtained in decay-corrected radiochemical yields of 30-40% at a specific radioactivity of 1.6-2.4Ci/mumol (60-90GBq/mumol) at the end-of-synthesis (EOS). Small animal PET, ex vivo and in vivo biodistribution experiments in rats demonstrated a high uptake in the striatum (3.2% ID/g) 5min after injection, which increased to 4.2% ID/g after 60min. The uptake in the cerebellum was 1.8% ID/g and 0.6% ID/g after 5min and 60min post-injection, respectively. Specific binding to DAT of [(18)F]MCL-322 was confirmed by blocking experiments using the high affinity DAT ligand GBR 12909. The radiopharmacological characterization was completed with metabolite and autoradiographic studies confirming the selective uptake of [(18)F]MCL-322 in the striatum. It is concluded that the simple single-step radiosynthesis of [(18)F]MCL-322 and the promising radiopharmacological data make [(18)F]MCL-322 an attractive candidate for the further development of a PET radiotracer potentially suitable for clinical DAT imaging in the human brain.
    [Abstract] [Full Text] [Related] [New Search]