These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: c-Myc-induced chemosensitization is mediated by suppression of cyclin D1 expression and nuclear factor-kappa B activity in pancreatic cancer cells. Author: Biliran H, Banerjee S, Thakur A, Sarkar FH, Bollig A, Ahmed F, Wu J, Sun Y, Liao JD. Journal: Clin Cancer Res; 2007 May 01; 13(9):2811-21. PubMed ID: 17473215. Abstract: PURPOSE: Pancreatic cancer is a highly aggressive disease that remains refractory to various chemotherapeutic agents. Because the proto-oncogene c-myc can modulate apoptosis in response to cytotoxic insults and is commonly overexpressed in pancreatic cancer, we investigated the value of c-myc as a potential modulator of cellular response to various chemotherapeutic agents. EXPERIMENTAL DESIGN: Stable overexpression or small interfering RNA (siRNA)-mediated knockdown of c-myc and restoration of cyclin D1 were done in the Ela-myc pancreatic tumor cell line. Cell viability after cisplatin treatment of c-myc-overexpressing, control, and siRNA-transfected cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and drug-induced apoptosis was measured by DNA fragmentation, sub-G(1), and poly(ADP-ribose) polymerase cleavage analyses. Protein expression profile after cisplatin treatment was determined by Western blotting and DNA binding activity of nuclear factor-kappaB was examined by electrophoretic mobility shift assay. RESULTS: Ectopic overexpression of c-myc in murine and human pancreatic cancer cell lines, Ela-myc and L3.6pl, respectively, resulted in increased sensitivity to cisplatin and other chemotherapeutic drugs. Increased sensitivity to cisplatin in c-myc-overexpressing cells was due, in part, to the marked increase in cisplatin-induced apoptosis. Conversely, down-regulation of c-myc expression in stable c-myc-overexpressing cells by c-myc siRNA resulted in decreased sensitivity to cisplatin-induced cell death. These results indicate an important role of c-myc in chemosensitivity of pancreatic cancer cells. The c-myc-induced cisplatin sensitivity correlated with inhibition of nuclear factor kappaB activity, which was partially restored by ectopic cyclin D1 overexpression. CONCLUSIONS: Our results suggest that the c-myc-dependent sensitization to chemotherapy-induced apoptosis involves suppression of cyclin D1 expression and nuclear factor kappaB activity.[Abstract] [Full Text] [Related] [New Search]