These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Difference between yeast and bovine mitochondrial ADP/ATP carriers in terms of conformational properties of the first matrix loop as deduced by use of copper-o-phenanthroline.
    Author: Kihira Y, Ueno M, Terada H.
    Journal: Biol Pharm Bull; 2007 May; 30(5):885-90. PubMed ID: 17473430.
    Abstract:
    The mitochondrial ADP/ATP carrier (AAC) has 6 transmembrane regions and 3 matrix loops. Our previous mutational study on the Cys residue in the LM1s of chimeric bovine type 1 AAC (yN-bAAC1), in which the N-terminal 11 amino acids of bovine type 1 AAC are substituted with the corresponding 26 amino acids of yeast type 2 AAC (yAAC2), and yAAC2 in the yeast expression system suggested the possibility of a different structural feature between their LM1s. In the present study, we compared the effects of the SH cross-linking reagent copper-o-phenanthroline (Cu(OP)(2)) on yN-bAAC1 and yAAC2 in order to study the difference between these LM1s of the 2 carriers. Cu(OP)(2) is known to cross-link 2 AAC molecules in a functional dimer via a Cys residue in each first matrix loop (LM1). yN-bAAC1 exhibited intra- and inter-molecular cross-linking, in agreement with the results of a previous study on the native bovine carrier and suggesting that yN-bAAC1 had the same structure as the native carrier. yAAC2 also showed intra- and inter-molecular cross-linking. However, the speed of formation of the inter-molecular cross-linking of yN-bAAC1 was faster than that of yAAC2, suggesting that the conformational state of the LM1 was different between the 2 carriers. In addition, we also studied the effects of AAC-specific inhibitors and solubilization with Triton X-100 on the cross-linking.
    [Abstract] [Full Text] [Related] [New Search]