These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of an osmoregulated periplasmic glycine betaine-binding protein in Azospirillum brasilense sp7. Author: Riou N, Poggi MC, Le Rudulier D. Journal: Biochimie; 1991 Sep; 73(9):1187-93. PubMed ID: 1747385. Abstract: Azospirillum brasilense is able to use glycine betaine as a powerful osmoprotectant; the uptake of this compound is strongly stimulated by salt stress, but significantly reduced by cold osmotic shock. Non-denaturing PAGE in the presence of [methyl-14C] glycine betaine and autoradiography demonstrated the presence of one glycine betaine-binding protein (GBBP) in periplasmic shock fluid obtained from high-osmolarity-grown cells. The binding activity was absent in periplasmic fractions from cells grown at low osmolarity. SDS-PAGE analysis showed that the osmotically inducible GBBP has an apparent molecular weight of 32,000. The isoelectric point was between 5.9 and 6.6, as determined by isoelectric focusing. This protein bound glycine betaine with high affinity (KD of 3 microM), but had no affinity for either other betaines (proline betaine, gamma-butyrobetaine, pipecolate betaine, trigonelline, homarine) or related compounds (choline, glycine betaine aldehyde, glycine and proline). Optimum binding activity occurred at pH 7.0 to 7.5, and was not altered whether or not the binding assays were done at low or high osmolarity. Immunoprecipitation and Western blotting showed that immunoadsorbed anti-GBBP antibody from E coli cross-reacted with the GBBP produced by A brasilense cells grown at high osmolarity.[Abstract] [Full Text] [Related] [New Search]