These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Author: Yang S, Undar A, Zahn JD. Journal: Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377. Abstract: A microfluidic device for continuous biosensing based on analyte binding with cytometric beads is introduced. The operating principle of the continuous biosensing is based on a novel concept named the "particle cross over" mechanism in microfluidic channels. By carefully designing the microfluidic network the beads are able to "cross-over" from a carrier fluid stream into a recipient fluid stream without mixing of the two streams and analyte dilution. After crossing over into the recipient stream, bead processing such as analyte-bead binding may occur. The microfluidic device is composed of a bead solution inlet, an analyte solution inlet, two washing solution inlets, and a fluorescence detection window. To achieve continuous particle cross over in microfluidic channels, each microfluidic channel is precisely designed to allow the particle cross over to occur by conducting a series of studies including an analogous electrical circuit study to find optimal fluidic resistances, an analytical determination of device dimensions, and a numerical simulation to verify microflow structures within the microfluidic channels. The functionality of the device was experimentally demonstrated using a commercially available fluorescent biotinylated fluorescein isothiocyanate (FITC) dye and streptavidin coated 8 microm-diameter beads. After, demonstrating particle cross over and biotin-streptavidin binding, the fluorescence intensity of the 8 microm-diameter beads was measured at the detection window and linearly depends on the concentration of the analyte (biotinylated FITC) at the inlet. The detection limit of the device was a concentration of 50 ng ml(-1) of biotinylated FITC.[Abstract] [Full Text] [Related] [New Search]