These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of iron deficiency stress response in cucumber by rare earth elements. Author: Johnson GV, Barton LL. Journal: Plant Physiol Biochem; 2007 May; 45(5):302-8. PubMed ID: 17481909. Abstract: We investigated the influence of the trivalent scandium (Sc), chromium (Cr), gallium (Ga), yttrium (Y) and lanthanum (La) on both the function and activity of ferric chelate reductase (FCR) in cucumber (Cucumis sativus L.) roots. Cucumber seedlings were grown for 1week in a nutrient solution without Fe or in some experiments with 10microM FeEDTA. Intact root systems were assayed for FCR activity in a medium at pH 5.0 containing 100microM FeEDTA with the ferrous chelating agent Ferrozine. Addition of 100microM concentrations of the EDTA complexes of Sc, Cr, Ga, Y and La did not inhibit FCR in Fe-deficient roots. When Fe-deficient roots were grown with 10microM LaCl(3), ScCl(3), or YCl(3) for 3days, FCR activity decreased to 23%, 15% and 1%, respectively, of the activity of Fe-deficient plants grown without trivalent metal addition. Additionally, these trivalent metals suppressed proton secretion. Growth of Fe-deficient plants with 80microM Ga(2)(SO(4))(3) decreased FCR activity to 35% of the control activity while 80microM CrEDTA did not affect FCR activity. With the addition of either FeEDTA or YCl(3), FCR activity decreased to less than 5% of the activity of the Fe-deficient control roots in 3days. Addition of FeEDTA, but not Y, resulted in recovery from Fe deficiency as indicated by increasing chlorophyll content of leaves.[Abstract] [Full Text] [Related] [New Search]