These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new classification model with simple decision rule for discovering optimal feature gene pairs.
    Author: Li J, Tang X.
    Journal: Comput Biol Med; 2007 Nov; 37(11):1637-46. PubMed ID: 17482157.
    Abstract:
    Classifiers have been widely used to select an optimal subset of feature genes from microarray data for accurate classification of cancer samples and cancer-related studies. However, the classification rules derived from most classifiers are complex and difficult to understand in biological significance. How to solve this problem is a new challenge. In this paper, a new classification model based on gene pair is proposed to address the problem. The experimental results on several microarray data demonstrate that the proposed classification model performs well in finding a large number of excellent feature gene pairs. A 100% LOOCV classification accuracy can be achieved using a single classification model based on optimal feature gene pair or combining multiple top-ranked classification models. Using the proposed method, we successfully identified important cancer-related genes that had been validated in previous biological studies while they were not discovered by the other methods.
    [Abstract] [Full Text] [Related] [New Search]