These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Author: Portner DC, Leuschner RG, Murray BS. Journal: Cryobiology; 2007 Jun; 54(3):265-70. PubMed ID: 17482158. Abstract: Freeze-dried cultures of Campylobacter jejuni are used in the food and microbiological industry for reference materials and culture collections. However, C. jejuni is very susceptible to damage during freeze-drying and subsequent storage and it would be useful to have longer-lasting cultures. The survival of C. jejuni during freeze-drying and subsequent storage was investigated with the aim of optimising survival. C. jejuni was freeze-dried using cultures of different age (24-120 h), various lyoprotectants (10% phytone peptone, proteose peptone, peptonized milk, trehalose, soytone and sorbitol), various storage (air, nitrogen and vacuum) and re-hydration (media, temperature and time) conditions. One-day-old cultures had significantly greater survival after freeze-drying than older cultures. The addition of trehalose to inositol broth as a lyoprotectant resulted in almost 2 log(10) increase in survival after 2 months storage at 4 degrees C. Storage in a vacuum atmosphere and re-hydration in inositol broth at 37 degrees C increased recovery by 1-2 log(10) survival compared to re-hydration in maximal recovery diluent (MRD) after storage at 4 degrees C. Survival during storage was optimal when a one-day-old culture was freeze-dried in inositol broth plus 10% (w/v) trehalose, stored under vacuum at 4 degrees C and re-hydrated at the same incubation temperature (37 degrees C) in inositol broth for 30 min. The results demonstrate that the survival of freeze-dried cells of C. jejuni during storage can be significantly increased by optimising the culture age, the lyoprotectant, and the storage and re-hydration conditions. The logarithmic rate of loss of viability (K) followed very well an inverse dependence on the absolute temperature, i.e., the Arrhenius rate law. Extrapolation of the results to a more typical storage temperature (4 degrees C) predicted a very low K value of 1.5 x 10(-3). These results will be useful to the development of improved reference materials and samples held in culture collections.[Abstract] [Full Text] [Related] [New Search]