These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification.
    Author: Iyanagi T.
    Journal: Int Rev Cytol; 2007; 260():35-112. PubMed ID: 17482904.
    Abstract:
    Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug-metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH-cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP-glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.
    [Abstract] [Full Text] [Related] [New Search]