These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Author: Leh SE, Ptito A, Chakravarty MM, Strafella AP. Journal: Neurosci Lett; 2007 May 29; 419(2):113-8. PubMed ID: 17485168. Abstract: Anatomical studies in animals have described multiple striatal circuits and suggested that sub-components of the striatum, although functionally related, project to distinct cortical areas. To date, anatomical investigations in humans have been limited by methodological constraints such that most of our knowledge of fronto-striatal networks relies on nonhuman primate studies. To better identify the fronto-striatal pathways in the human brain, we used Diffusion Tensor Imaging (DTI) tractography to reconstruct neural connections between the frontal cortex and the caudate nucleus and putamen in vivo. We demonstrate that the human caudate nucleus is interconnected with the prefrontal cortex, inferior and middle temporal gyrus, frontal eye fields, cerebellum and thalamus; the putamen is interconnected with the prefrontal cortex, primary motor area, primary somatosensory cortex, supplementary motor area, premotor area, cerebellum and thalamus. A connectivity-based seed classification analysis identified connections between the dorsolateral prefrontal areas (DLPFC) and the dorsal-posterior caudate nucleus and between the ventrolateral prefrontal areas (VLPFC) and the ventral-anterior caudate nucleus. For the putamen, connections exist between the supplementary motor area (SMA) and dorsal-posterior putamen while the premotor area projects to medial putamen, and the primary motor area to the lateral putamen. Identifying the anatomical organization of the fronto-striatal network has important implications for understanding basal ganglia function and associated disease processes.[Abstract] [Full Text] [Related] [New Search]