These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Citrobacter rodentium infection causes iNOS-independent intestinal epithelial dysfunction in mice.
    Author: Skinn AC, Vergnolle N, Zamuner SR, Wallace JL, Cellars L, MacNaughton WK, Sherman PM.
    Journal: Can J Physiol Pharmacol; 2006 Dec; 84(12):1301-12. PubMed ID: 17487239.
    Abstract:
    Attaching-effacing bacteria are major causes of infectious diarrhea in humans worldwide. Citrobacter rodentium is an attaching-effacing enteric pathogen that causes transmissible murine colonic mucosal hyperplasia. We characterized colonic inflammation and ion transport at 3, 7, 10, 30, and 60 d after infection of C57Bl/6 mice with C. rodentium. Macroscopic damage score was significantly increased 7 and 10 d after infection. Colonic wall thickness was increased at 7, 10, 30, and 60 d. Myeloperoxidase (MPO) activity was significantly increased at 3, 7, and 10 d and returned to control levels by days 30 and 60. The expressions of inducible nitric oxide synthase and cyclooxygenase-2 were increased by C. rodentium infection. Significant reductions in the epithelial secretory response to carbachol, but not to electrical field stimulation or forskolin, were observed at 3 and 10 d of infection. Translocation of enteric bacteria into the mesenteric lymph nodes was observed 10 d following infection. There was no difference in response to infection between animals deficient in inducible nitric oxide synthase and wild-type controls. The COX-2 inhibitor rofecoxib caused decreased wall thickness and MPO activity at day 10. However, COX-2 inhibition did not alter infection-induced changes in ion transport. Citrobacter rodentium infection causes colonic inflammation, mucosal hyperplasia, and nitric-oxide-independent epithelial dysfunction in association with increased permeability to luminal bacteria.
    [Abstract] [Full Text] [Related] [New Search]