These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tribute to P. L. Lutz: respiratory ecophysiology of coral-reef teleosts.
    Author: Nilsson GE, Hobbs JP, Ostlund-Nilsson S.
    Journal: J Exp Biol; 2007 May; 210(Pt 10):1673-86. PubMed ID: 17488931.
    Abstract:
    One of the most diverse vertebrate communities is found on tropical coral reefs. Coral-reef fishes are not only remarkable in color and shape, but also in several aspects of physiological performance. Early in life, at the end of the pelagic larval stage, coral-reef fishes are the fastest swimmers of all fishes in relation to body size, and show the highest specific rates of maximum oxygen uptake. Upon settling on the reef, coral-reef fishes have to adopt a demersal lifestyle, which involves coping with a habitat that can become severely hypoxic, and some fishes may even have to rely on air breathing when their coral homes become air exposed. Oxygen availability appears to be a major ambient selection pressure, making respiratory function a key factor for survival on coral reefs. Consequently, hypoxia tolerance is widespread among coral-reef fishes. Hypoxia can even be a factor to gamble with for those fishes that are mouthbrooders, or a factor that the coral inhabitants may actively seek to reduce by sleep-swimming at night. Here, we summarize the present knowledge of the respiratory ecophysiology of coral-reef teleosts. From an ecophysiological perspective, the coral reef is an exciting and largely unexplored system for testing existing hypotheses and making new discoveries.
    [Abstract] [Full Text] [Related] [New Search]