These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excited state intramolecular proton transfer in 2-(2'-arylsulfonamidophenyl)benzimidazole derivatives: insights into the origin of donor substituent-induced emission energy shifts.
    Author: Wu Y, Lawson PV, Henary MM, Schmidt K, Brédas JL, Fahrni CJ.
    Journal: J Phys Chem A; 2007 May 31; 111(21):4584-95. PubMed ID: 17489564.
    Abstract:
    Donor-substituted 2-(2'-arylsulfonamidophenyl)benzimidazoles undergo efficient excited-state intramolecular proton transfer (ESIPT) upon photoexcitation. The tautomer emission energy depends strongly on the substituent attachment position on the fluorophore pi-system. While substitution with a donor group in the para-position relative to the sulfonamide moiety yields an emission energy that is red-shifted relative to the unsubstituted fluorophore, fluorescence of the meta-substituted derivative appears blue-shifted. To elucidate the origin of the surprisingly divergent emission shifts, we performed detailed photophysical and quantum chemical studies with a series of methoxy- and pyrrole-substituted derivatives. The nature and contribution of solvent-solute interactions on the emission properties were analyzed on the basis of solvatochromic shift data using Onsager's reaction field model, Reichardt's empirical solvent polarity scale ET(30), as well as Kamlet-Abboud-Taft's empirical solvent index. The studies revealed that all ESIPT tautomers emit from a moderately polarized excited-state whose dipole moment is not strongly influenced by the donor-attachment position. Furthermore, the negative solvatochromic shift behavior was most pronounced in protic solvents presumably due to specific hydrogen-bonding interactions. The extrapolated gas-phase emission energies correlated qualitatively well with the trends in Stokes shifts, suggesting that solute-solvent interactions do not play a significant role in explaining the divergent emission energy shifts. Detailed quantum chemical calculations not only confirmed the moderately polarized nature of the ESIPT tautomers but also provided a rational for the observed emission shifts based on the differential change in the HOMO and LUMO energies. The results gained from this study should provide guidelines for tuning the emission properties of this class of ESIPT fluorophores with potential applications in analytical chemistry, biochemistry, or materials science.
    [Abstract] [Full Text] [Related] [New Search]