These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. Author: Zuzak KJ, Naik SC, Alexandrakis G, Hawkins D, Behbehani K, Livingston EH. Journal: Anal Chem; 2007 Jun 15; 79(12):4709-15. PubMed ID: 17492839. Abstract: We developed and characterized a new imaging platform for minimally invasive surgical venues, specifically a system to help guide laparoscopic surgeons to visualize biliary anatomy. This platform is a novel combination of a near-infrared hyperspectral imaging system coupled with a conventional surgical laparoscope. Intraoperative tissues are illuminated by optical fibers arranged in a ring around a center-mounted relay lens collecting back-reflected light from tissues to the hyperspectral imaging system. The system consists of a focal plane array (FPA) and a liquid crystal tunable filter, which is continuously tunable in the near-infrared spectral range of 650-1100 nm with the capability of passing light with a mean bandwidth of 6.95 nm, and the FPA is a high-sensitivity back-illuminated, deep depleted charge-coupled device. Placing a standard resolution target 5.1 cm from the distal end of the laparoscope, a typical intraoperative working distance, produced a 7.6-cm-diameter field of view with an optimal spatial resolution of 0.24 mm. In addition, the system's spatial and spectral resolution and its wavelength tuning accuracy are characterized. The spectroscopic images are formatted into a three-dimensional hyperspectral image cube and processed using principle component analysis. The processed images provide contrast based on measured spectra associated with chemically different anatomical structures helping identify the main molecular chromophores inherent to each tissue. The principal component images were found to image swine gallbladder and biliary structures from surrounding tissues, in real time, during cholecystectomy surgery. Furthermore, it is shown that surgeons can interrogate selected image subregions for their molecular composition identifying biliary anatomy during surgery and before any invasive action is undertaken.[Abstract] [Full Text] [Related] [New Search]