These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure and dynamics of short chain molecules in disordered porous materials: a molecular dynamics simulation study. Author: Chang R, Yethiraj A. Journal: J Chem Phys; 2007 May 07; 126(17):174906. PubMed ID: 17492885. Abstract: The static and dynamic properties of short polymer chains in disordered materials are studied using discontinuous molecular dynamics simulations. The polymers are modeled as chains of hard spheres and the matrix is a collection of fixed hard spheres. The simulations show that the chain size is a nonmonotonic function of the matrix concentration for all polymer concentrations. The dependence of polymer diffusion D on the degree of polymerization N becomes stronger as the matrix concentration is increased. At high matrix concentrations we observe a decoupling between translational and rotational diffusion, i.e., the rotational relaxation time becomes very large but the translational diffusion is not affected significantly. We attribute this to the trapping of a small number of polymers. Under these conditions the polymer chains diffuse via a hopping mechanism.[Abstract] [Full Text] [Related] [New Search]