These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Author: Boeckstaens M, André B, Marini AM. Journal: Mol Microbiol; 2007 Apr; 64(2):534-46. PubMed ID: 17493133. Abstract: Three ammonium transport systems of the Mep/Amt/Rh superfamily contribute to ammonium uptake for use as a nitrogen source in Saccharomyces cerevisiae. A specific sensor role has further been proposed for Mep2 in the stimulation of pseudohyphal development during ammonium limitation. Optimal ammonium transport by the Mep proteins requires the Npr1 kinase, a potential target of the target-of-rapamycin signalling pathway. We show here that the growth impairment of cells lacking Npr1 on many nitrogen sources is shared by cells deprived of the three Mep proteins and is a consequence of deficient ammonium retrieval. Expression of a newly isolated Npr1-independent and hyperactive Mep2 in cells lacking Npr1 and/or the Mep proteins restores growth on low ammonium but also on other nitrogen sources. This hyperactive Mep2 variant efficiently counteracts ammonium excretion. Hence, ammonium uptake activity plays an important role in compensating for leakage of catabolic ammonium. Our data also reveal that the requirement of Npr1 for ammonium-induced pseudohyphal growth is an indirect consequence of its necessity for Mep2-mediated ammonium transport. Finally, we show that Mep2 participates, through ammonium leakage compensation, in pseudohyphal growth induced by amino acid starvation. This argues further in favour of tight coupling of Mep2 transport and sensor functions.[Abstract] [Full Text] [Related] [New Search]