These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics of oligonucleotide hybridization to DNA probe arrays on high-capacity porous silica substrates.
    Author: Glazer MI, Fidanza JA, McGall GH, Trulson MO, Forman JE, Frank CW.
    Journal: Biophys J; 2007 Sep 01; 93(5):1661-76. PubMed ID: 17496028.
    Abstract:
    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of approximately 23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-microm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-microm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22 degrees C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (k(a), k(d), and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22 degrees C is described well by the predictive equations for morphology, whereas the behavior at 45 degrees C deviates from expectations and suggests that more complex phenomena may be occurring in that temperature regime.
    [Abstract] [Full Text] [Related] [New Search]