These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken.
    Author: Jones MA, Hulme SD, Barrow PA, Wigley P.
    Journal: Avian Pathol; 2007 Jun; 36(3):199-203. PubMed ID: 17497331.
    Abstract:
    Salmonella enterica serovar Typhimurium infection of chickens is a major public and animal health problem. In young chicks, S. Typhimurium infection results in severe systemic infection; in older chicks, infection results in prolonged gastrointestinal tract colonization. Here we determined the role of the Salmonella pathogenicity island 1 (SPI-1) and Salmonella pathogenicity island 2 (SPI-2) type III secretion systems in systemic infection and gastrointestinal tract colonization of the chicken though experimental infection of chicks with a S. Typhimurium strain with mutations in the genes encoding the secretion system machinery of SPI-1 (spaS) and SPI-2 (ssaU) that prevent secretion of effector proteins. In 1-day-old chicks, mutation of SPI-2 lead to a decrease in both systemic bacterial numbers and pathology, although no difference in gastrointestinal numbers was observed. Mutation of SPI-1 had little effect in 1-day old chicks. In 1-week-old animals the SPI-2 mutants could not be detected systemically and colonized the gastrointestinal tract only in low numbers in comparison with the parent strain, and was cleared in 1 week. The SPI-1 mutant showed greatly reduced levels of systemic infection, and colonized the gastrointestinal tract at a lower level than the parent strain. The findings show that the SPI-2 type III secretion system is required for systemic S. Typhimurium infection in both infection models, and that it plays a significant role in gastrointestinal colonization. The SPI-1 system is involved in both systemic infection and gastrointestinal colonization, but does not appear absolutely essential for either infection process.
    [Abstract] [Full Text] [Related] [New Search]