These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sedimentation field flow fractionation to study human erythroleukemia cell megakaryocytic differentiation after short period diosgenin induction. Author: Léger DY, Battu S, Liagre B, Cardot PJ, Beneytout JL. Journal: J Chromatogr A; 2007 Jul 20; 1157(1-2):309-20. PubMed ID: 17499257. Abstract: Anti-cancer differentiation therapy could be one strategy to stop cancer cell proliferation. We propose a new sedimentation field flow fractionation (SdFFF) cell separation application in the field of cancer research. It concerns the study of megakaryocytic differentiation processes after a short exposure to an inducting agent (diosgenin). Washout process and early dual SdFFF separation--removing the influence of diosgenin and decreasing the influence of undifferentiated cells--resulted in the preparation of an enriched population to study the mechanism and kinetics of megakaryocytic differentiation. A short exposure to diosgenin was able to induce complete differentiation leading to maximal maturation which ended naturally after 192h incubation without the influence of a secondary effect of diosgenin. The study of isolated undifferentiated cells also showed that no resistance to diosgenin was observed. This result suggested different sensitivities to differentiation induction, and SdFFF cell separation would be of great interest to explore this phenomena.[Abstract] [Full Text] [Related] [New Search]