These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. Author: Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA. Journal: J Biol Chem; 2007 Jul 13; 282(28):20634-46. PubMed ID: 17500066. Abstract: Beta-arrestins are pleiotropic molecules that mediate signal desensitization, G-protein-independent signaling, scaffolding of signaling molecules, and chemotaxis. Protease-activated receptor-2 (PAR-2), a Galpha(q/11)-coupled receptor, which has been proposed as a therapeutic target for inflammation and cancer, requires the scaffolding function of beta-arrestins for chemotaxis. We hypothesized that PAR-2 can trigger specific responses by differential activation of two pathways, one through classic Galpha(q)/Ca(2+) signaling and one through beta-arrestins, and we proposed that the latter involves scaffolding of proteins involved in cell migration and actin assembly. Here we demonstrate the following. (a) PAR-2 promotes beta-arrestin-dependent dephosphorylation and activation of the actin filament-severing protein (cofilin) independently of Galpha(q)/Ca(2+) signaling. (b) PAR-2-evoked cofilin dephosphorylation requires both the activity of a recently identified cofilin-specific phosphatase (chronophin) and inhibition of LIM kinase (LIMK) activity. (c) Beta-arrestins can interact with cofilin, LIMK, and chronophin and colocalize with them in membrane protrusions, suggesting that beta-arrestins may spatially regulate their activities. These findings identify cofilin as a novel target of beta-arrestin-dependent scaffolding and suggest that many PAR-2-induced processes may be independent of Galpha(q/11) protein coupling.[Abstract] [Full Text] [Related] [New Search]