These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differences between normal and demineralized dentine pretreated with silver fluoride and potassium iodide after an in vitro challenge by Streptococcus mutans. Author: Knight GM, McIntyre JM, Craig GG, Mulyani, Zilm PS, Gully NJ. Journal: Aust Dent J; 2007 Mar; 52(1):16-21. PubMed ID: 17500159. Abstract: BACKGROUND: The application of diamine silver fluoride (Ag(NH3)2F) and potassium iodide (KI) to demineralized dentine has been shown to inhibit the growth of Streptococcus mutans. The purpose of this study was to observe the differences between demineralized and non-demineralized dentine treated with AgF/KI. METHODS: Thirty-five dentine discs were bonded to the bases of 5 mL polycarbonate screw top vials which were filled with nutrient medium, sterilized and placed into the overflow from a continuous culture of S. mutans. Samples were divided as follows: 10 samples of demineralized dentine; 10 samples of demineralized dentine treated with AgF/KI; 5 samples of non-demineralized dentine; and 10 samples of non-demineralized dentine treated with AgF/KI. Following two weeks connected to the Chemostat, an electron probe microanalysis (EPMA) of percentage weights and penetration depths of calcium, phosphorous silver and fluoride was conducted. Bacterial growth was monitored by taking optical density readings of the growth medium in each vial and outer surfaces of the specimens were examined by scanning electron microscopy (SEM). RESULTS: AgF/KI treatment of demineralized and non-demineralized dentine prevented biofilm formation and reduced further demineralization by S. mutans. AgF/KI treatment of demineralized dentine was more effective in reducing dentine breakdown and the growth of S. mutans. Significantly higher levels of silver and fluoride were deposited within demineralized dentine. CONCLUSIONS: A topical treatment with AgF/KI on dentine reduced in vitro caries development and inhibited surface biofilm formation. Reduction of in vitro caries development and viability of S. mutans was more pronounced on the dentine samples that had been demineralized prior to the application of[Abstract] [Full Text] [Related] [New Search]