These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.
    Author: Shida K.
    Journal: Genome Inform; 2006; 17(2):3-13. PubMed ID: 17503374.
    Abstract:
    The difficulties of computational discovery of transcription factor binding sites (TFBS) are well represented by (l, d) planted motif challenge problems. Large d problems are difficult, particularly for profile-based motif discovery algorithms. Their local search in the profile space is apparently incompatible with subtle motifs and large mutational distances between the motif occurrences. Herein, an improved profile-based method called GibbsDST is described and tested on (15,4), (12,3), and (18,6) challenging problems. For the first time for a profile-based method, its performance in motif challenge problems is comparable to that of Random Projection. It is noteworthy that GibbsDST outperforms a pattern-based algorithm, WINNOWER, in some cases. Effectiveness of GibbsDST using a biological dataset as an example and its possible extension to more realistic evolution models are also introduced.
    [Abstract] [Full Text] [Related] [New Search]