These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of an approach for ab initio estimation of compound-induced liver injury based on global gene transcriptional profiles. Author: Dai X, He YD, Dai H, Lum PY, Roberts CJ, Waring JF, Ulrich RG. Journal: Genome Inform; 2006; 17(2):77-88. PubMed ID: 17503381. Abstract: Toxicity is a major cause of failure in drug development. A toxicogenomic approach may provide a powerful tool for better assessing the potential toxicity of drug candidates. Several approaches have been reported for predicting hepatotoxicity based on reference compounds with well-studied toxicity mechanisms. We developed a new approach for assessing compound-induced liver injury without prior knowledge of a compound's mechanism of toxicity. Using samples from rodents treated with 49 known liver toxins and 10 compounds without known liver toxicity, we derived a hepatotoxicity score as a single quantitative measurement for assessing the degree of induced liver damage. Combining the sensitivity of the hepatotoxicity score and the power of a machine learning algorithm, we then built a model to predict compound-induced liver injury based on 212 expression profiles. As estimated in an independent data set of 54 expression profiles, the built model predicted compound-induced liver damage with 90.9% sensitivity and 88.4% specificity. Our findings illustrate the feasibility of ab initio estimation of liver toxicity based on transcriptional profiles.[Abstract] [Full Text] [Related] [New Search]