These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Author: Liu JG, Naruta Y, Tani F. Journal: Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416. Abstract: Two synthetic models of the active site of cytochrome c oxidase--[(LN4-OH)CuI-FeII(TMP)]+ (1 a) and [(LN3-OH)CuI-FeII(TMP)]+ (2 a)-have been designed and synthesized. These models each contain a heme and a covalently attached copper moiety supported either by a tetradentate N4-copper chelate or by a tridentate N3-copper chelate including a moiety that acts as a mimic of the crosslinked His-Tyr component of cytochrome c oxidase. Low-temperature oxygenation reactions of these models have been investigated by spectroscopic methods including UV/Vis, resonance Raman, ESI-MS, and EPR spectroscopy. Oxygenation of the tetradentate model 1 a in MeCN and in other solvents produces a low-temperature-stable dioxygen-bridged peroxide [(LN4-OH)CuII-O2-FeIII(TMP)]+ {nuO--O=799 (16O2)/752 cm(-1) (18O2)}, while a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] {nuFe--O2: 576 (16O2)/551 cm(-1) (18O2)} is generated when the tridentate model 2 a is oxygenated in EtCN solution under similar experimental conditions. The coexistence of a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] and a bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ species in equal amounts is observed when the oxygenation reaction of 2 a is performed in CH2Cl(2)/7 % EtCN, while the percentage of the peroxide (approximately 70 %) in relation to superoxide (approximately 30 %) increases further when the crosslinked phenol moiety in 2 a is deprotonated to produce the bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ {nuO--O: 812 (16O2)/765 cm(-1) (18O2)} as the main dioxygen intermediate. The weak reducibility and decreased O2 reactivity of the tricoordinated CuI site in 2 a are responsible for the solvent-dependent formation of dioxygen adducts. The initial binding of dioxygen to the copper site en route to the formation of a bridged heme-O2-Cu intermediate by model 2 a is suggested and the deprotonated crosslinked His-Tyr moiety might contribute to enhancement of the O2 affinity of the CuI site at an early stage of the dioxygen-binding process.[Abstract] [Full Text] [Related] [New Search]