These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of pressure at primary drying of freeze-drying mouse sperm reproduction ability and preservation potential.
    Author: Kawase Y, Hani T, Kamada N, Jishage K, Suzuki H.
    Journal: Reproduction; 2007 Apr; 133(4):841-6. PubMed ID: 17504927.
    Abstract:
    Freeze-dried spermatozoa are capable of participating in normal embryonic development after injection into oocytes and thus useful for the maintenance of genetic materials. We recently reported that long-term preservation of freeze-dried mouse spermatozoa by conventional methods requires temperatures lower than -80 degrees C. Successful permanent preservation of mouse spermatozoa at much higher temperatures requires thorough investigation of the freeze-drying procedure. Thus, we examined the relationship between the pressure at primary drying and the preservation potential of freeze-dried mouse spermatozoa. Three different primary drying pressures were applied to evaluate the effect of pressure on freeze-dried spermatozoa under varying storage conditions and the rate of development measured. The developmental rate of embryos to the blastocyst stage from intracytoplasmic sperm injection by freeze-dried spermatozoa at pressures of 0.04, 0.37, and 1.03 mbar without storage were 59% (337/576), 71% (132/187), and 33% (99/302) respectively. When stored at 4 degrees C for 6 months, the rate was 13% (48/367), 50% (73/145), and 36% (66/182) respectively. These results show that primary drying pressure is an influential factor in the long-term preservation of freeze-dried mouse spermatozoa.
    [Abstract] [Full Text] [Related] [New Search]