These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 11. Enzymatic joining to form the total DNA duplex.
    Author: Kleppe R, Sekiya T, Loewen PC, Kleppe K, Agarwal KL, Büchi H, Besmer P, Caruthers MH, Cashion PJ, Fridkin M, Jay E, Kumar A, Miller RC, Minamoto K, Panet A, RajBhandary UL, Ramamoorthy B, Sidorova N, Takeya T, van de Sande JH, Khorana HG.
    Journal: J Biol Chem; 1976 Feb 10; 251(3):667-75. PubMed ID: 175058.
    Abstract:
    The DNA duplex corresponding to the entire length (126 nucleotides) of the precursor for an Escherichia coli tyrosine tRNA has been synthesized. Duplex [I] (Sekiya, T., Besmer, P., Takeya, T., and Khorana, H. G.(1976) J. Biol. Chem. 251, 634-641), corresponding to the nucleotide sequence 1-26, containing single-stranded ends and carrying one appropriately labeled 5'-phosphate group, was joined to duplex [II] (Loewen, P. C., Miller, R. C., Panet, A., Sekiya, T., and Khorana, H. G. (1976) J. Biol. Chem. 251, 642-650) (nucleotide sequence 23-66 or 23-60) was phosphorylated with [gamma-33P]ATP at the 5'-OH ends. Duplex [III] (Panet, A., Kleppe, R., Kleppe, K., and Khorana, H. G. (1976) J. Biol. Chem. 251, 651-657) (nucleotide sequence 57-94 (Fig. 2)) was also phosphorylated at 5'-ends with [gamma-33P]ATP and was joined to duplex [IV] (Caruthers, M. H., Kleppe, R., Kleppe, K., and Khorana, H. G. (1976) J. Biol. Chem. 251, 658-666) (nucleotide sequence 90-126) which carried a 33P-labeled phosphate group on nucleotide 90. The joined product, duplex [III + IV] (nucleotide sequence 57-126) was characterized. The latter duplex was joined to the duplex [I + II] to give the total duplex. The latter contains singlestranded ends (nucleotides 1 to 6 and 121 to 126) which can either be "filled in" to produce the completely base-paired duplex or may be used to add the promoter and terminator regions at the appropriate ends.
    [Abstract] [Full Text] [Related] [New Search]