These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptional control of the human high mobility group A1 gene: basal and oncogenic Ras-regulated expression. Author: Cleynen I, Huysmans C, Sasazuki T, Shirasawa S, Van de Ven W, Peeters K. Journal: Cancer Res; 2007 May 15; 67(10):4620-9. PubMed ID: 17510387. Abstract: Several studies have already shown that the high mobility group A1 (HMGA1) gene is up-regulated in most common types of cancer and immortalized tissue culture cell lines. HMGA1 expression is also much higher during embryonic development than in adult life. The elevated expression of HMGA1 in cancer thus likely occurs through oncofetal transcriptional mechanisms, which to date have not been well characterized. In the present study, we have cloned and functionally analyzed the TATA-less 5'-flanking regulatory region of human HMGA1. We identified two proximal regulatory regions that are important for basal transcription and in which specificity protein 1 (SP1) and activator protein 1 (AP1) transcription factors seem to be the regulating elements. In addition, we showed that the HMGA1 promoter is strongly inducible by oncogenic Ras, via a distal regulatory region. An AP1 site and three SP1-like sites are responsible for this inducible activity. An even more convincing finding for a role of oncogenic Ras in the regulation of HMGA1 in cancers is the discovery that HMGA1 up-regulation in the HCT116 colon cancer cell line is abolished when the mutated Ras allele is removed from these cells. Our data constitute the first extensive study of the regulation of basal and Ras-induced human HMGA1 gene expression and suggest that the elevated expression of HMGA1 in cancer cells requires, among others, a complex cooperation between SP1 family members and AP1 factors by the activation of Ras GTPase signaling.[Abstract] [Full Text] [Related] [New Search]