These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NOP receptor antagonist, JTC-801, blocks cannabinoid-evoked hypothermia in rats. Author: Rawls SM, Schroeder JA, Ding Z, Rodriguez T, Zaveri N. Journal: Neuropeptides; 2007 Aug; 41(4):239-47. PubMed ID: 17512052. Abstract: The present study used the endpoint of hypothermia to investigate cannabinoid and nociceptin/orphanin FQ (N/OFQ) interactions in conscious animals. Prior work has established that cannabinoids produce hypothermia by activating central cannabinoid CB(1) receptors. The administration of N/OFQ into the brain also causes significant hypothermia. Those data suggest a link between cannabinoid CB(1) receptors and N/OFQ peptide (NOP) receptors in the production of hypothermia. Therefore, we determined if NOP receptor activation is required for cannabinoid-evoked hypothermia and if cannabinoid CB(1) receptor activation is necessary for N/OFQ-induced hypothermia. In actual experiments, a cannabinoid agonist, WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.), caused significant hypothermia in male Sprague-Dawley rats (200-225 g). A NOP receptor antagonist, JTC-801 (1 mg/kg, i.p.), did not affect body temperature. For combined administration, JTC-801 (1 mg/kg, i.p.) blocked a significant proportion of the hypothermia caused by each dose of WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.). JTC-801 (1 mg/kg, i.p.) also blocked the hypothermia caused by another cannabinoid agonist, CP-55, 940 (1 mg/kg, i.p.). In separate experiments, the direct administration of N/OFQ (9 microg/rat, i.c.v.) into the brain produced significant hypothermia. The hypothermic effect of N/OFQ was blocked by JTC-801 (1 mg/kg, i.p.) but not by a selective cannabinoid CB(1) antagonist, SR 141716A (5 mg/kg, i.m.). The finding that a NOP receptor antagonist abolishes a significant percentage of cannabinoid-induced hypothermia suggests that NOP receptor activation is required for cannabinoids to produce hypothermia. This interaction, quantitated in the present study, is the first evidence that NOP receptors mediate a cannabinoid-induced effect in conscious animals.[Abstract] [Full Text] [Related] [New Search]