These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses. Author: Takatsuru Y, Iino M, Tanaka K, Ozawa S. Journal: Neurosci Lett; 2007 Jun 08; 420(1):85-9. PubMed ID: 17513050. Abstract: Rapid removal of synaptically released glutamate from the extracellular space ensures a high signal-to-noise ratio in excitatory neurotransmission. In the cerebellum, glial glutamate transporters, GLAST and GLT-1, are co-localized in the processes of Bergmann glia wrapping excitatory synapses on Purkinje cells (PCs). Although GLAST is expressed six-fold more abundantly than GLT-1, the decay kinetics of climbing fiber-mediated excitatory postsynaptic currents (CF-EPSCs) in PCs in GLAST(-/-) mice are not different from those in wild-type (WT) mice. This raises a possibility that GLT-1 plays a significant role in clearing glutamate at CF-PC synapses despite its smaller amount of expression. Here, we studied the functions of GLT-1 and GLAST in the clearance of glutamate using GLAST(-/-) mice and GLT-1(-/-) mice. In the presence of cyclothiazide (CTZ) that attenuates the desensitization of AMPA receptors, the decay time constant of CF-EPSCs (tau(w)) in GLT-1(-/-) mice was slower than that in WT mice. However, the degree of this prolongation of tau(w) was less prominent compared to that in GLAST(-/-) mice. The values of tau(w) in GLT-1(-/-) mice and GLAST(-/-) mice were comparable to those estimated in WT mice in the presence of a potent blocker of glial glutamate transporters (2S,3S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate (PMB-TBOA) at 10 and 100 nM, which reduced the amplitudes of glutamate transporter currents elicited by CF stimulation in Bergmann glia to approximately 81 and approximately 28%, respectively. We conclude that GLT-1 plays a minor role compared to GLAST in clearing synaptically released glutamate at CF-PC synapses.[Abstract] [Full Text] [Related] [New Search]